Math 246A Lecture 23 Notes

Daniel Raban

November 19, 2018

1 Harmonic Measure

1.1 Harmonic measure

Let Ω be a bounded domain, and suppose that the Dirichlet problem is solvable in Ω . In other words, if $f \in C(\Omega)$, then there exists some continuous u_f on $\overline{\Omega}$ such that $u_f = f$ on $\partial\Omega$ and $\Delta u_f = 0$ on Ω .

Suppose we send $f \mapsto u_f(z)$ for $z \in \Omega$. This is a bounded linear functional (bounded by the maximum principle). Then there exists a probability measure μ in $\partial\Omega$ such that

$$u_f(z) = \int_{\partial\Omega} f(\zeta) d\mu_z(\zeta),$$

where

$$d\mu_z = \frac{1}{2\pi} \frac{1-|z|^2}{|e^{i\theta}-z|^2} \, d\theta.$$

1.2 Probability measures on tori and conditional probability

Let $\mathbb{T} = \{z : |z| - 1\}$, and let $\mathbb{T}^n = \{(e^{it_1}, \dots, e^{it_n}) : e^{it_j} \in \mathbb{T}\}$ by the *n*-torus. This has a natural measure $d\theta_1 \cdots d\theta_n / (2\pi)^n$. We can define $\mathbb{T}^{\infty} = \{e^{i\theta_1}, \dots\} : e^{i\theta_j} \in \mathbb{T}\}$. This has a product topology given to it from the copies of \mathbb{T} . In fact, it is a compact metric space. Define the projection $\pi_n(e^{i\overline{\theta}}) = (e^{i\theta_1}, \dots, e^{i\theta_n})$. The topology is the smallest topology making all the π_n continuous.

Let E be Borel, and let $E \subseteq \mathbb{T}^{\infty}$. There exists a product measure P_n on \mathbb{T}^n for each n. Then, by the Kolmogorov extension theorem, there exists a measure P on \mathbb{T}^{∞} given by

$$P(E) := \lim_{n \to \infty} P_n(\pi_n(E)).$$

Let X be a measurable function on \mathbb{T}^{∞} , and suppose that $X \in L^1$ (it is a random variable with finite expectation). Let \mathcal{F}_n be the set of measurable functions of $(e^{i\theta_1}, \ldots, e^{i\theta_n})$. Then the conditional expectation is

$$E[X \mid \mathcal{F}_n](e^{i\theta_1}, \dots, e^{i\theta_n}) = \int_{\mathbb{T}^\infty} X(e^{i\theta_1}, \dots, e^{i\theta_n}, e^{i\overline{\theta}}) \, dP(\overline{\theta}).$$

Note that $E[X | \mathcal{F}_n] \in \mathcal{F}_n$. Here is another interpretation. If $X \in L^2$, then it also acts on the Hilbert space. Then the conditional expectation is the best guess of X acting on the subspace \mathcal{F}_n .

1.3 Martingales in a domain

Definition 1.1. A martingale is a sequence $(X_n)_{n \in \mathbb{N}}$ of random variables such that

- 1. $X_n \in \mathcal{F}_n$
- 2. $E[X_{n+1} \mid \mathcal{F}_n] = X_n$

Think of this as a fair game.

Theorem 1.1 (Doob). If $1 , <math>(X_n)$ is a martingale, and $\sup_n E[|S_n|^p] < \infty$, then there exists a measurable function X such that $X_n \to X$ a.s. and $X_n = E[X | \mathcal{F}_n]$ for each $n \in \mathbb{N}$.

Returning to our bounded domain Ω , let $\overline{\theta} \in \mathbb{T}^{\infty}$. Let $r_0 = (1/2) \operatorname{dist}(z_0, \partial \Omega)$. Define $z_1 = z_0 + r_0 e^{i\theta_1}$. Now let $r_1 = \frac{1}{2} \operatorname{dist}(z_1, \partial \Omega)$, and let $z_2 = z_1 + r_1 e^{i\theta_2}$. Continuing this, we can get a sequence of z_n and r_n such that z_n and r_n are \mathcal{F}_n measurable and $E[z_{n+1} | \mathcal{F}_n] = z_n$. So the (z_n) form a bounded martingale.

By Doob's martingale theorem, $z_n \xrightarrow{a.s.} z_\infty$ for some z_∞ . This means that $r_n = |z_{n+1} - z_n| \to 0$ a.s., as well. So $z_\infty \in \partial\Omega$ a.s. Now let $f \in C(\partial\Omega)$, and let $u_f(z_n) = Z_n$. Now let $X_{n+1} = u_f(z_n + r_n e^{i\theta_n})$, and observe that

$$E[X_{n+1} \mid \mathcal{F}_n] = \frac{1}{2\pi} \int u_f(z_n + r_n e^{i\theta_{n+1}}) \, d\theta_{n+1} = u_f(z_n).$$

By continuity, $X_n \to f(z_\infty)$. This means that

$$\int f(\zeta) \, dP = u_f(z_0),$$

so $\mu_{z_0}(E) = P(z_\infty \in E)$.

Corollary 1.1. Let $v \in C(\overline{\Omega})$ be such that for all $z \in \Omega$,

$$v(z) = \frac{1}{2\pi} \int_0^{2\pi} v(z + r_z e^{i\theta}) d\theta$$

where $r_z = \frac{1}{2} \operatorname{dist}(z, \partial \Omega)$. Then v is harmonic.

Remark 1.1. We don't actually need $r_z = \frac{1}{2} \operatorname{dist}(z, \partial \Omega)$. We can pick r_z such that $|z_{n+1} - z_n| \to 0$, such as $r(z) = \frac{9}{10} \operatorname{dist}(z, \partial \Omega)$.

 $z_{n+1} = z_n + \frac{1}{2} \operatorname{dist}(z_n, \partial \Omega) e^{i\theta_{n+1}}$. Observe that

$$\int \underbrace{(z_{n+1}-z_n)}_{re^{i\theta_n+1}} \underbrace{\overline{(z_{m+1}-z_m)}}_{r_m e^{-i\theta_{m+1}}} dP = \delta_{n,m} r_n^2.$$

This tells us that

$$\mathbb{E}\left[\sum |z_{n+1} - z_n|^2\right] = r_n^2.$$